Previous Year Paper 2022 Shift 2

GATE 2022 (CE Set-2) Civil Engineering

GATE 2022 General Aptitude

Q. 1 - Q. 5 Carry ONE mark each.

Q.1	The movie was funny and I__._.
(A)	could help laughing
(B)	couldn't help laughed
(C)	couldn't help laughing
(D)	could helped laughed

Q. 2	$x: y: z=\frac{1}{2}: \frac{1}{3}: \frac{1}{4}$.
What is the value of $\frac{x+z-y}{y} ?$	
(A)	0.75
(B)	1.25
(C)	2.25
(D) 3.25	

GATE 2022 (CE Set-2) Civil Engineering

Q. 3	Both the numerator and the denominator of $\frac{3}{4}$ are increased by a positive integer, x, and those of $\frac{15}{17}$ are decreased by the same integer. This operation results in the same value for both the fractions. What is the value of $x ?$
(A)	1
(B)	2
(C)	3
(D)	4

Q. 4	A survey of 450 students about their subjects of interest resulted in the following outcome. - 150 students are interested in Mathematics. - 200 students are interested in Physics. - 175 students are interested in Chemistry. - 50 students are interested in Mathematics and Physics. - 60 students are interested in Physics and Chemistry. - 40 students are interested in Mathematics and Chemistry. - 30 students are interested in Mathematics, Physics and Chemistry. - Remaining students are interested in Humanities. Based on the above information, the number of students interested in Humanities is
(A)	10 (3
(B)	30
(C)	40
(D)	45

GATE 2022 (CE Set-2) Civil Engineering

GATE 2022 (CE Set-2) Civil Engineering

Q. 6 - Q. 10 Carry TWO marks each.

Q.6	In the last few years, several new shopping malls were opened in the city. The total number of visitors in the malls is impressive. However, the total revenue generated through sales in the shops in these malls is generally low. Which one of the following is the CORRECT logical inference based on the information in the above passage?
(A)	Fewer people are visiting the malls but spending more
(B)	More people are visiting the malls but not spending enough
(C)	More people are visiting the malls and spending more
(D)	Fewer people are visiting the malls and not spending enough

GATE 2022 (CE Set-2) Civil Engineering

Q.7	In a partnership business the monthly investment by three friends for the first six months is in the ratio 3: 4: 5. After six months, they had to increase their monthly investments by $10 \%, 15 \%$ and 20%, respectively, of their initial monthly investment. The new investment ratio was kept constant for the next six months. What is the ratio of their shares in the total profit (in the same order) at the end of the year such that the share is proportional to their individual total investment over the year?
(A)	$22: 23: 24$
(B)	$22: 33: 50$
(C)	$33: 46: 60$
(D)	$63: 86: 110$

GATE 2022 (CE Set-2) Civil Engineering

GATE 2022 (CE Set-2) Civil Engineering

Q.9	Given below are two statements and four conclusions drawn based on the statements. Statement 1: Some soaps are clean. Statement 2: All clean objects are wet.		
Conclusion I: Some clean objects are soaps.			
Conclusion II: No clean object is a soap.			
Conclusion III: Some wet objects are soaps.			
Conclusion IV: All wet objects are soaps.			
Which one of the following options can be logically inferred?		\quad	(A)
:---		Only conclusion I is correct	
:---			
(B)		Either conclusion I or conclusion II is correct	
:---	,	(D)	
:---			

GATE 2022 (CE Set-2) Civil Engineering

GATE 2022 (CE Set-2) Civil Engineering

Q.11-35 Carry ONE mark each.

Q. 11	The function $f(x, y)$ satisfies the Laplace equation $\nabla^{2} f(x, y)=0$
(A)on a circular domain of radius $r=\mathbf{1}$ with its center at point P with coordinates is equal to $\mathbf{3}$. The value of this function on the circular boundary of this domain The numerical value of $f(\mathbf{0}, \mathbf{0})$ is:	
(B)	0
(C)	3
(D)	1

GATE 2022 (CE Set-2) Civil Engineering

Q. 12	$\int\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots\right) \mathrm{d} x$ is equal to
(A)	$\frac{1}{1+x}+\text { Constant }$
(B)	$\frac{1}{1+x^{2}}+\text { Constant }$
(C)	$-\frac{1}{1-x}+\text { Constant }$
(D)	$-\frac{1}{1-x^{2}}+\text { Constant }$
Q. 13	For a linear elastic and isotropic material, the correct relationship among Young's modulus of elasticity (E), Poisson's ratio (v), and shear modulus (G) is
(A)	$G=\frac{E}{2(1+v)}$
(B)	$G=\frac{E}{(1+2 v)}$
(C)	$E=\frac{G}{2(1+v)}$
(D)	$E=\frac{G}{(1+2 v)}$

GATE 2022 (CE Set-2) Civil Engineering
$\left.\left.\begin{array}{|l|l|}\hline \text { Q.14 } & \begin{array}{l}\text { Read the following statements relating to flexure of reinforced concrete beams: } \\ \text { I. In over-reinforced sections, the failure strain in concrete reaches earlier than } \\ \text { the yield strain in steel. } \\ \text { II. In under-reinforced sections, steel reaches yielding at a load lower than the } \\ \text { load at which the concrete reaches failure strain. } \\ \text { III. Over-reinforced beams are recommended in practice as compared to the } \\ \text { under-reinforced beams. } \\ \text { IV. In balanced sections, the concrete reaches failure strain earlier than the yield } \\ \text { strain in tensile steel. } \\ \text { Each of the above statements is either True or False. } \\ \text { Which one of the following combinations is correct? }\end{array} \\ \hline \text { (A) } & \text { I (True), II (True), III (False), IV (False) }\end{array} \right\rvert\, \begin{array}{ll}\text { (B) I (True), II (True), III (False), IV (True) } \\ \hline \text { (C) } & \text { I (False), II (False), III (True), IV (False) }\end{array}\right\}$

GATE 2022 (CE Set-2) Civil Engineering

GATE 2022 (CE Set-2) Civil Engineering

Q.16	Consider a beam PQ fixed at P , hinged at Q , and subjected to a load F as shown in figure (not drawn to scale). The static and kinematic degrees of indeterminacy, respectively, are
(A)	2 and 1
(B)	2 and 0
(C)	1 and 2
(D)	2 and 2

GATE 2022 (CE Set-2) Civil Engineering

Q.17	Read the following statements: (P) While designing a shallow footing in sandy soil, monsoon season is considered for critical design in terms of bearing capacity. (Q) For slope stability of an earthen dam, sudden drawdown is never a critical condition. (R) In a sandy sea beach, quicksand condition can arise only if the critical hydraulic gradient exceeds the existing hydraulic gradient. (S) The active earth thrust on a rigid retaining wall supporting homogeneous cohesionless backfill will reduce with the lowering of water table in the backfill. Which one of the following combinations is correct?			
(A)	(P)-True, (Q)-False, (R)-False, (S)-False	$	$	(P)-False, (Q)-True, (R)-True, (S)-True
:---				

GATE 2022 (CE Set-2) Civil Engineering

Q.18	Stresses acting on an infinitesimal soil element are shown in the figure (with $\sigma_{z}>\sigma_{x}$. The major and minor principal stresses are σ_{1} and σ_{3}, respectively. Considering the compressive stresses as positive, which one of the following expressions correctly represents the angle between the major principal stress plane and the horizontal plane?
(A)	$\tan ^{-1}\left(\frac{\tau_{z x}}{\sigma_{1}-\sigma_{x}}\right)$
(B)	$\tan ^{-1\left(\frac{\tau_{z x}}{\sigma_{3}-\sigma_{x}}\right)}$
(C)	$\tan ^{-1\left(\frac{\tau_{z x}}{\sigma_{1}+\sigma_{x}}\right)}$

GATE 2022 (CE Set-2) Civil Engineering

GATE 2022 (CE Set-2) Civil Engineering

Q.20	In a certain month, the reference crop evapotranspiration at a location is $6 \mathrm{~mm} /$ day. If the crop coefficient and soil coefficient are 1.2 and 0.8 , respectively, the actual evapotranspiration in $\mathrm{mm} /$ day is
(A)	5.76
(B)	7.20
(C)	6.80
(D)	8.00
Q.21	$\mathrm{The} \mathrm{dimension} \mathrm{of} \mathrm{dynamic} \mathrm{viscosity} \mathrm{is:}^{\text {(A) }}$
$\mathrm{M} \mathrm{L}^{-1} \mathrm{~T}^{-1}$	
(B)	$\mathrm{M} \mathrm{L}^{-1} \mathrm{~T}^{-2}$
(C)	$\mathrm{M} \mathrm{L}^{-2} \mathrm{~T}^{-2}$
(D)	$\mathrm{M} \mathrm{L}^{0} \mathrm{~T}^{-1}$

GATE 2022 (CE Set-2) Civil Engineering

Q.22	A process equipment emits $5 \mathrm{~kg} / \mathrm{h}$ of volatile organic compounds (VOCs). If a hood placed over the process equipment captures 95% of the VOCs, then the fugitive emission in kg / h is
(A)	0.25
(B)	4.75
(C)	2.50
(D)	0.48

GATE 2022 (CE Set-2) Civil Engineering

GATE 2022 (CE Set-2) Civil Engineering

Q.24	If the magnetic bearing of the Sun at a place at noon is $\mathbf{S} \mathbf{2}^{\circ} \mathbf{E}$, the magnetic declination (in degrees) at that place is
(A)	$2^{\circ} \mathrm{E}$
(B)	$2^{\circ} \mathrm{W}$
(C)	$4^{\circ} \mathrm{E}$
(D)	$4^{\circ} \mathbf{W}$
Q.25	\mathbf{P} and \mathbf{Q} are two square matrices of the same order. Which of the following statement(s) is/are correct?
(A)	If \mathbf{P} and \mathbf{Q} are invertible, then $[\mathbf{P Q}]^{-1}=\mathbf{Q}^{-1} \mathbf{P}^{-1}$.
(B)	If \mathbf{P} and \mathbf{Q} are invertible, then $[\mathbf{Q P}]^{-1}=\mathbf{P}^{-1} \mathbf{Q}^{-1}$.
(C)	If \mathbf{P} and \mathbf{Q} are invertible, then $[\mathbf{P Q}]^{-1}=\mathbf{P}^{-1} \mathbf{Q}^{-1}$.
(D)	If \mathbf{P} and \mathbf{Q} are not invertible, then $[\mathbf{P Q}]^{-1}=\mathbf{Q}^{-1} \mathbf{P}^{-1}$.

GATE 2022 (CE Set-2) Civil Engineering

Q.26	In a solid waste handling facility, the moisture contents (MC) of food waste, paper waste, and glass waste were found to be MCf, MCp, and MCg, respectively. Similarly, the energy contents (EC) of plastic waste, food waste, and glass waste were found to be ECpp, ECf, and ECg, respectively. Which of the following statement(s) is/are correct?
(A)	MCf $>\mathrm{MCp}>\mathrm{MCg}$
(B)	ECpp $>\mathrm{ECf}>\mathrm{ECg}$
(C)	MCf $<\mathrm{MCp}<\mathrm{MCg}$
(D)	ECpp <ECf $<\mathrm{ECg}$
Q.27	To design an optimum municipal solid waste collection route, which of the following is/are NOT desired:
(A)	Collection vehicle should not travel twice down the same street in a day.
(B)	Waste collection on congested roads should not occur during rush hours in morning or evening.
(C)	Collection should occur in the uphill direction.
(D)	The last collection point on a route should be as close as possible to the waste disposal facility.

GATE 2022 (CE Set-2) Civil Engineering

Q. 28	For a traffic stream, v is the space mean speed, k is the density, q is the flow, v_{f} is the free flow speed, and k_{j} is the jam density. Assume that the speed decreases linearly with density. Which of the following relation(s) is/are correct?
(A)	$q=k_{j} k-\left(\frac{k_{j}}{v_{f}}\right) k^{2}$
(B)	$q=v_{f} k-\left(\frac{v_{f}}{k_{j}}\right) k^{2}$
(C)	$q=v_{f} v-\left(\frac{v_{f}}{k_{j}}\right) v^{2}$
(D)	$q=k_{j} v-\left(\frac{k_{j}}{v_{f}}\right) v^{2}$
Q. 29	The error in measuring the radius of a 5 cm circular rod was 0.2%. If the cross-sectional area of the rod was calculated using this measurement, then the resulting absolute percentage error in the computed area is \qquad (round off to two decimal places)
Q. 30	The components of pure shear strain in a sheared material are given in the matrix form: $\boldsymbol{\varepsilon}=\left[\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right]$ Here, $\operatorname{Trace}(\varepsilon)=0$. Given, $P=\operatorname{Trace}\left(\boldsymbol{\varepsilon}^{8}\right)$ and $Q=\operatorname{Trace}\left(\boldsymbol{\varepsilon}^{11}\right)$. The numerical value of $(P+Q)$ is \qquad . (in integer)

GATE 2022 (CE Set-2) Civil Engineering

Q. 31	The inside diameter of a sampler tube is $\mathbf{5 0} \mathbf{~ m m}$. The inside diameter of the cutting edge is kept such that the Inside Clearance Ratio (ICR) is $\mathbf{1 . 0} \%$ to minimize the friction on the sample as the sampler tube enters into the soil. The inside diameter (in $\mathbf{m m}$) of the cutting edge is \qquad (round off to two decimal places)
Q. 32	A concentrically loaded isolated square footing of size $\mathbf{2 m \times 2 m}$ carries a concentrated vertical load of $\mathbf{1 0 0 0} \mathbf{~ k N}$. Considering Boussinesq's theory of stress distribution, the maximum depth (in \mathbf{m}) of the pressure bulb corresponding to $\mathbf{1 0} \%$ of the vertical load intensity will be \qquad (round off to two decimal places)
Q. 33	In a triaxial unconsolidated undrained (UU) test on a saturated clay sample, the cell pressure was 100 kPa . If the deviatoric stress at failure was 150 kPa , then the undrained shear strength of the soil is \qquad kPa . (in integer)
Q. 34	A flood control structure having an expected life of n years is designed by considering a flood of return period T years. When $T=n$, and $n \rightarrow \infty$, the structure's hydrologic risk of failure in percentage is \qquad (round off to one decimal place)
Q. 35	The base length of the runway at the mean sea level (MSL) is $\mathbf{1 5 0 0} \mathbf{~ m}$. If the runway is located at an altitude of $\mathbf{3 0 0} \mathbf{~ m}$ above the MSL, the actual length (in \mathbf{m}) of the runway to be provided is \qquad . (round off to the nearest integer)

Q. 36-65 Carry TWO marks each.

Q.36	Consider the polynomial $f(x)=x^{3}-6 x^{2}+11 x-6$ on the domain S given by $1 \leq x \leq 3$. The first and second derivatives are $f^{\prime}(x)$ and $f^{\prime \prime}(x)$. Consider the following statements: I. The given polynomial is zero at the boundary points $x=1$ and $x=3$. II. There exists one local maxima of $f(x)$ within the domain S. III. The second derivative $f^{\prime \prime}(x)>0$ throughout the domain S. IV. There exists one local minima of $f(x)$ within the domain S. The correct option is:		
(A)	Only statements I, II and III are correct.	\quad	Only statements I, II and IV are correct.
:---			
(B)			
Only statements I and IV are correct.			
(D)			
Only statements II and IV are correct.			

GATE 2022 (CE Set-2) Civil Engineering

Q.37	An undamped spring-mass system with mass m and spring stiffness k is shown in the figure. The natural frequency and natural period of this system are ω rad $/ \mathrm{s}$ and $T \mathrm{~s}$, respectively. If the stiffness of the spring is doubled and the mass is halved, then the natural frequency and the natural period of the modified system, respectively, are
(A)	$2 \omega \mathrm{rad} / \mathrm{s}$ and $T / 2 \mathrm{~s}$
(B)	$\omega / 2 \mathrm{rad} / \mathrm{s}$ and $2 T \mathrm{~s}$
(C)	$4 \omega \mathrm{rad} / \mathrm{s}$ and $T / 4 \mathrm{~s}$
(D)	$\omega \mathrm{rad} / \mathrm{s}$ and $T \mathrm{~s}$

GATE 2022 (CE Set-2) Civil Engineering

Q.38	For the square steel beam cross-section shown in the figure, the shape factor about
$Z-Z$ axis is S and the plastic moment capacity is M_{P}. Consider yield stress	
$f_{y}=\mathbf{2 5 0} \mathbf{~ M P a}$ and $a=\mathbf{1 0 0} \mathbf{~ m m}$.	
(A)	$S=2.0, M_{P}=58.9 \mathrm{kN}-\mathrm{m}$
(B)	$S=2.0, M_{P}=100.2 \mathrm{kN}-\mathrm{m}$
(C)	$S=1.5, M_{P}=58.9 \mathrm{kN-m}$
(D)	$S=1.5, M_{P}=100.2 \mathrm{kN}-\mathrm{m}$

GATE 2022 (CE Set-2) Civil Engineering

Q.39	A post-tensioned concrete member of span 15 m and cross-section of $450 \mathrm{~mm} \times 450 \mathrm{~mm}$ is prestressed with three steel tendons, each of cross-sectional area 200 mm^{2}. The tendons are tensioned one after another to a stress of 1500 MPa . All the tendons are straight and located at 125 mm from the bottom of the member. Assume the prestress to be the same in all tendons and the modular ratio to be 6. The average loss of prestress, due to elastic deformation of concrete, considering all three tendons is
(A)	14.16 MPa
(B)	7.08 MPa
(C)	28.32 MPa
(D)	42.48 MPa

GATE 2022 (CE Set-2) Civil Engineering

GATE 2022 (CE Set-2) Civil Engineering

Q.41	A soil sample is underlying a water column of height h_{1}, as shown in the figure. The vertical effective stresses at points A, B, and C are $\sigma_{\mathrm{A}}^{\prime}, \sigma_{\mathrm{B}}^{\prime}$, and $\sigma_{\mathrm{C}}^{\prime}$, respectively. Let $\gamma_{\text {sat }}$ and γ^{\prime} be the saturated and submerged unit weights of the soil sample, respectively, and γ_{w} be the unit weight of water. Which one of the following expressions correctly represents the sum $\left(\sigma_{\mathrm{A}}^{\prime}+\sigma_{\mathrm{B}}^{\prime}+\sigma_{\mathrm{C}}^{\prime}\right)$?
(A)	$\left(2 h_{2}+h_{3}\right) \gamma^{\prime}$
(B)	$\left(h_{1}+h_{2}+h_{3}\right) \gamma^{\prime}$
(C)	$\left(h_{2}+h_{3}\right)\left(\gamma_{\mathrm{sat}}-\gamma_{\mathrm{w}}\right)$
(D)	

GATE 2022 (CE Set-2) Civil Engineering

Q. 42	A 100 mg of HNO_{3} (strong acid) is added to water, bringing the final volume to 1.0 liter. Consider the atomic weights of H, N, and O , as $1 \mathrm{~g} / \mathrm{mol}, 14 \mathrm{~g} / \mathrm{mol}$, and $16 \mathrm{~g} / \mathrm{mol}$, respectively. The final pH of this water is (Ignore the dissociation of water.)
(A)	2.8
(B)	6.5
(C)	3.8
(D)	8.5
Q. 43	In a city, the chemical formula of biodegradable fraction of municipal solid waste (MSW) is $\mathrm{C}_{100} \mathrm{H}_{250} \mathrm{O}_{80} \mathrm{~N}$. The waste has to be treated by forced-aeration composting process for which air requirement has to be estimated. Assume oxygen in air $($ by weight $)=\mathbf{2 3} \%$, and density of air $=\mathbf{1 . 3} \mathbf{~ k g} / \mathbf{m}^{3}$. Atomic mass: $\mathrm{C}=12, \mathrm{H}=1, \mathrm{O}=16, \mathrm{~N}=14$. C and H are oxidized completely whereas N is converted only into NH_{3} during oxidation. For oxidative degradation of $\mathbf{1}$ tonne of the waste, the required theoretical volume of air (in $\mathbf{m}^{\mathbf{3}} / \mathbf{t o n n e)}$ will be (round off to the nearest integer)
(A)	4749
(B)	8025
(C)	1418
(D)	1092

GATE 2022 (CE Set-2) Civil Engineering

Q.44	A single-lane highway has a traffic density of 40 vehicles/km. If the time-mean speed and space-mean speed are 40 kmph and 30 kmph, respectively, the average headway (in seconds) between the vehicles is
(A)	3.00
(B)	2.25
(C)	8.33×10^{-4}
(D)	6.25×10^{-4}
Q.45	Let \boldsymbol{y} be a non-zero vector of size 2022 statement(s) is/are TRUE? Which of the following
(A)	$\boldsymbol{y} \boldsymbol{y}^{T}$ is a symmetric matrix.
(B)	$\boldsymbol{y}^{T} \boldsymbol{y}$ is an eigenvalue of $\boldsymbol{y} \boldsymbol{y}^{T}$.
(C)	$\boldsymbol{y} \boldsymbol{y}^{T}$ has a rank of 2022.
(D)	$\boldsymbol{y} \boldsymbol{y}^{T}$ is invertible.

GATE 2022 (CE Set-2) Civil Engineering
$\left.\begin{array}{|l|l|}\hline \text { Q.46 } & \text { Which of the following statement(s) is/are correct? } \\ \hline \text { (A) } & \begin{array}{l}\text { If a linearly elastic structure is subjected to a set of loads, the partial derivative } \\ \text { of the total strain energy with respect to the deflection at any point is equal to } \\ \text { the load applied at that point. }\end{array} \\ \hline \text { (B) } & \begin{array}{l}\text { If a linearly elastic structure is subjected to a set of loads, the partial derivative } \\ \text { of the total strain energy with respect to the load at any point is equal to the } \\ \text { deflection at that point. }\end{array} \\ \hline \text { (C) } & \begin{array}{l}\text { If a structure is acted upon by two force system } P_{a} \text { and } P_{b}, \text { in equilibrium } \\ \text { separately, the external virtual work done by a system of forces } P_{b} \text { during the } \\ \text { deformations caused by another system of forces } P_{a} \text { is equal to the external } \\ \text { virtual work done by the } P_{a} \text { system during the deformation caused by the } P_{b} \\ \text { system. } \\ \text { (D) }\end{array} \begin{array}{l}\text { In choked condition, } y_{1} \text { increases if the flow is supercritical and decreases if the } \\ \text { flow is subcritical. } \\ \text { (D) } \\ \hline \text { In unchoked condition, } y_{1} \text { remains unaffected when the flow is supercritical or } \\ \text { subcritical. } \\ \text { (Beam is equal to the corresponding deflection of the real beam. }\end{array} \\ \hline \text { Q.47 } & \begin{array}{l}\text { In choked condition, } y_{2} \text { is equal to the critical depth if the flow is supercritical } \\ \text { or subcritical. } \\ \text { (A) } \\ \text { Water is flowing in a horizontal, frictionless, rectangular channel. A smooth } \\ \text { hump is built on the channel floor at a section and its height is gradually increased } \\ \text { to reach choked condition in the channel. The depth of water at this section is } y_{2} \\ \text { and that at its upstream section is } y_{1} . \text { The correct statement(s) for the choked and } \\ \text { unchoked conditions in the channel is/are }\end{array} \\ \hline \text { flow is subcritical. }\end{array}\right\}$

GATE 2022 (CE Set-2) Civil Engineering

GATE 2022 (CE Set-2) Civil Engineering

Q. 50	Consider two linearly elastic rods $H I$ and $I J$, each of length b, as shown in the figure. The rods are co-linear, and confined between two fixed supports at H and J. Both the rods are initially stress free. The coefficient of linear thermal expansion is α for both the rods. The temperature of the rod $I J$ is raised by ΔT, whereas the temperature of rod $H I$ remains unchanged. An external horizontal force P is now applied at node I. It is given that $\alpha=\mathbf{1 0}^{-6}{ }^{\circ} \mathrm{C}^{\mathbf{- 1}}, \Delta T=\mathbf{5 0}^{\circ} \mathrm{C}$, $b=\mathbf{2} \mathbf{m}, A E=\mathbf{1 0}^{\mathbf{6}} \mathbf{N}$. The axial rigidities of the rods $H I$ and $I J$ are $2 A E$ and $A E$, respectively. To make the axial force in rod $H I$ equal to zero, the value of the external force $P($ in $\mathbf{N})$ is \qquad . (round off to the nearest integer)
Q. 51	The linearly elastic planar structure shown in the figure is acted upon by two vertical concentrated forces. The horizontal beams $U V$ and $W X$ are connected with the help of the vertical linear spring with spring constant $k=20 \mathbf{k N} / \mathbf{m}$. The fixed supports are provided at U and X. It is given that flexural rigidity $E I=\mathbf{1 0}^{\mathbf{5}} \mathbf{~ k N}-\mathbf{m}^{2}, P=\mathbf{1 0 0} \mathbf{~ k N}$, and $a=\mathbf{5} \mathbf{m}$. Force Q is applied at the center of beam $W X$ such that the force in the spring $V W$ becomes zero. The magnitude of force Q (in $\mathbf{k N}$) is \qquad . (round off to the nearest integer)

GATE 2022 (CE Set-2) Civil Engineering

Q. 52	A uniform rod $K J$ of weight w shown in the figure rests against a frictionless vertical wall at the point K and a rough horizontal surface at point J. It is given that $w=\mathbf{1 0} \mathbf{k N}, a=\mathbf{4} \mathbf{m}$ and $b=\mathbf{3} \mathbf{~ m}$. The minimum coefficient of static friction that is required at the point J to hold the rod in equilibrium is \qquad . (round off to three decimal places)
Q. 53	The activities of a project are given in the following table along with their durations and dependency. The total float of the activity E (in days) is \qquad . (in integer)

GATE 2022 (CE Set-2) Civil Engineering

Q. 54	A group of total $\mathbf{1 6}$ piles are arranged in a square grid format. The center-tocenter spacing (s) between adjacent piles is $\mathbf{3} \mathbf{~ m}$. The diameter (d) and length of embedment of each pile are $\mathbf{1} \mathbf{~ m}$ and $\mathbf{2 0} \mathbf{m}$, respectively. The design capacity of each pile is $\mathbf{1 0 0 0} \mathbf{~ k N}$ in the vertical downward direction. The pile group efficiency $\left(\eta_{g}\right)$ is given by $\eta_{g}=1-\frac{\theta}{90}\left[\frac{(n-1) m+(m-1) n}{m n}\right]$ where m and n are number of rows and columns in the plan grid of pile arrangement, and $\theta=\tan ^{-1}\left(\frac{d}{s}\right)$. The design value of the pile group capacity (in $\mathbf{k N}$) in the vertical downward direction is \qquad . (round off to the nearest integer)
Q. 55	A saturated compressible clay layer of thickness h is sandwiched between two sand layers, as shown in the figure. Initially, the total vertical stress and pore water pressure at point P , which is located at the mid-depth of the clay layer, were 150 kPa and 25 kPa , respectively. Construction of a building caused an additional total vertical stress of 100 kPa at P . When the vertical effective stress at P is 175 kPa , the percentage of consolidation in the clay layer at P is \qquad (in integer)

GATE 2022 (CE Set-2) Civil Engineering
$\left.\begin{array}{|l|l|}\hline \text { Q.56 } & \begin{array}{l}\text { A hydraulic jump takes place in a } 6 \mathrm{~m} \text { wide rectangular channel at a point where } \\ \text { the upstream depth is } 0.5 \mathrm{~m} \text { (just before the jump). If the discharge in the } \\ \text { channel is } 30 \mathrm{~m}^{3} / \mathrm{s} \text { and the energy loss in the jump is } 1.6 \mathrm{~m} \text {, then the Froude } \\ \text { number computed at the end of the jump is } \\ \text { decimal places) } \\ \left.\text { (Consider the acceleration due to gravity as } 10 \mathrm{~m} / \mathrm{s}^{2} .\right)\end{array} \\ \hline \text { Q.57 } & \begin{array}{l}\text { A pump with an effic two }\end{array} \\ \text { irrigating a flat field of area } 108 \text { hectares. The base period and delta for paddy } \\ \text { crop on this field are } 120 \text { days and } 144 \mathrm{~cm}, \text { respectively. Water application } \\ \text { efficiency in the field is } 80 \% \text {. The lowest level of water in the well is } 10 \mathrm{~m} \\ \text { below the ground. The minimum required horse power (h.p.) of the pump is } \\ \text { (round off to two decimal places) }\end{array}\right\}$

GATE 2022 (CE Set-2) Civil Engineering

Q. 60	A sewage treatment plant receives sewage at a flow rate of $\mathbf{5 0 0 0} \mathbf{m}^{\mathbf{3}} / \mathrm{day}$. The total suspended solids (TSS) concentration in the sewage at the inlet of primary clarifier is $\mathbf{2 0 0} \mathbf{~ m g} / \mathrm{L}$. After the primary treatment, the TSS concentration in sewage is reduced by 60%. The sludge from the primary clarifier contains 2% solids concentration. Subsequently, the sludge is subjected to gravity thickening process to achieve a solids concentration of $\mathbf{6 \%}$. Assume that the density of sludge, before and after thickening, is $\mathbf{1 0 0 0} \mathbf{~ k g} / \mathrm{m}^{3}$. The daily volume of the thickened sludge (in $\mathbf{m}^{3} /$ day) will be \qquad (round off to the nearest integer)
Q. 61	A sample of air analyzed at $25^{\circ} \mathrm{C}$ and $\mathbf{1} \mathbf{~ a t m}$ pressure is reported to contain $\mathbf{0 . 0 4} \mathbf{~ p p m}$ of SO_{2}. Atomic mass of $\mathrm{S}=32, \mathrm{O}=\mathbf{1 6}$. The equivalent SO_{2} concentration (in $\boldsymbol{\mu \mathrm { g }} / \mathbf{m}^{3}$) will be \qquad (round off to the nearest integer)
Q. 62	A parabolic vertical crest curve connects two road segments with grades $+1.0 \%$ and -2.0%. If a 200 m stopping sight distance is needed for a driver at a height of 1.2 m to avoid an obstacle of height 0.15 m , then the minimum curve length should be \qquad m . (round off to the nearest integer)
Q. 63	Assuming that traffic on a highway obeys the Greenshields model, the speed of a shockwave between two traffic streams (P) and (Q) as shown in the schematic is \qquad kmph. (in integer) Direction of traffic

GATE 2022 (CE Set-2) Civil Engineering

Q. 64	It is given that an aggregate mix has $\mathbf{2 6 0}$ grams of coarse aggregates and $\mathbf{2 4 0}$ grams of fine aggregates. The specific gravities of the coarse and fine aggregates are $\mathbf{2 . 6}$ and $\mathbf{2 . 4}$, respectively. The bulk specific gravity of the mix is 2.3. The percentage air voids in the mix is \qquad . (round off to the nearest integer)
Q. 65	The lane configuration with lane volumes in vehicles per hour of a four-arm signalized intersection is shown in the figure. There are only two phases: the first phase is for the East-West and the West-East through movements, and the second phase is for the North-South and the South-North through movements. There are no turning movements. Assume that the saturation flow is $\mathbf{1 8 0 0}$ vehicles per hour per lane for each lane and the total lost time for the first and the second phases together is $\mathbf{9}$ seconds. The optimum cycle length (in seconds), as per the Webster's method, is \qquad . (round off to the nearest integer)

